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Abstract 
 
A statistical analysis was recently presented at a DOE review in reference to a particular 
problem. Here we attempt to capture the essence of this problem with a simple “toy” analog and 
demonstrate the incorrectness of the presented J figure of merit algorithm. We show that the 
incorrect usage of J gives PDFs that have erroneous long tails and significantly overestimate the 
rms deviations relative to those obtained by exact analytic methods. Conversely, a numerical 
Bayesian analysis gives the correct result. 
 

(1) Introduction 
 
Here we study a very simple data analysis problem where a detector observes a signal yA1yA1 
at time t1, and yA2yA2 at time t2 in experiment A; and yB1yB1 at time t1 and yB2yB2 at time 
t2 in experiment B. We assume the data uncertainties are Gaussian and that the signals vary 
linearly with time: y=C+Mt. M can be thought to be a surrogate for die-away, and C related to 
timing uncertainties [1,2], for an NDSE application described in more detail in [3]. The question 
to be asked is: what are the slopes M for experiments A and B? For our simple “toy” problem the 
slope from experiment A is known analytically, 
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and similarly for experiment B. We imagine the experimental results yA1=2.000.02, 
yA2=1.000.01, yB1=2.000.02, yB2=0.6000.006 with t1=0.00 and t2=1.00 (see Fig. 1). The 
corresponding measured slopes are known analytically to be MA=1.0000.022 and 
MB=1.4000.021 with Gaussian uncertainties. The two slopes are clearly distinguishable. 
Below we apply the algorithm used by Lawrence Livermore National Laboratory (LLNL) [1,2] 
to the simple test problem outlined above to point out some of its deficiencies. This is followed 
by a parallel numerical analysis using standard Bayesian inference that gives the same outcomes 
as the known analytic result as given by Eq. (1). 
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(2)  Zika et al. J FOM algorithm [1,2] 

 
Fig. 1. Experimental results for the toy problem outlined in section (1). 
 
We here use the figure of merit (FOM) [1] 
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In the case of our simplified problem with only two data per experiment this translates to 
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If we make experiment A the reference then the FOM for experiment B is JB=0.20. 
 
We construct a series of 10000 trial models where the intercept C and slope M are chosen 
randomly. Here we assume C is from a Gaussian distribution with a mean of 2.0 and a standard 
deviation of 0.1, and M is uniformly distributed from 0 to 2. The first 200 of the 10000 trial 
models are displayed in Fig. 2. For each model we calculate the FOM Ji with i=1 to 10000 for 
each of the trial models. The array of corresponding Ji versus (1)Mi is displayed in Fig. 3. The 
red-dashed lines show a slice of J, 0.01 either side of JB=0.20. Fig. 4 shows the relative 
probability density function (PDF) obtained via the points in the narrow slice about JB=0.20. 
This PDF is not the uncertainty PDF for the quantity M for experiment B. However, LLNL 
assumed it was. Please remember that from section (1) we know the slope from experiment B is 
MB=1.4000.021. Please note the PDF in Fig. 4 is bimodal, with another peak in the PDF that is 
obviously unphysical. This could be masked by only including trial models with a slope less than 
that of experiment A (as done by Zika et al.) giving the PDF as shown to the right of 
(1)M=1.00 in Fig. 4. Please notice the non-Gaussian nature of the PDF to the right of 
(1)M=1.00. Using only the right hand side of the PDF gives M=1.370.10 (here we quote the 
rms spread as a measure of the uncertainty). The rms uncertainty is ~5 times larger than the 
correct analytical result of 0.021. The Zika et al J metric inferred PDFs are very sensitive to the 
distribution of trial models (the priors). The width, “peakyness”, and skewness of the PDF in Fig. 
4 can be modified by changes in the priors. This sensitivity to the priors has little to do with the 
“real” uncertainty for MB.  
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Fig. 2. The first 200 of the 10000 trial models. 

 
Fig. 3. J versus (1)M for the 10000 trial models discussed in the text. Here the J values are 
calculated using experiment A as the reference (as done by Zika et al.). Notice the FOM is small 
for models close to experiment A (with a slope M=1.00) and grows larger as the trial model 
“slope” moves away from M = 1.00. The red-dashed lines show a slice of J, 0.01 either side of 
JB=0.20. 

 
Fig. 4. Relative PDF obtained via the points in the narrow slice about JB=0.20 shown in Fig. 3. 
This is not the uncertainty PDF for the quantity M for experiment B. Using only the right hand 
side of the PDF gives M=1.370.10. The rms uncertainty of 0.10 is ~5 times larger than the 
correct analytical result of 0.021. 
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Now consider the possibility that “other” information is available that reduces the uncertainty in 
the intercept C in our thought experiment by a factor of four. With this change, the results 
corresponding to figures 3 and 4 are displayed in figures 5 and 6. Notice that the PDF on the 
right hand side of Fig. 6 now resembles the known analytic result. However, it is not the 
uncertainty PDF for the quantity M for experiment B. 

 
Fig. 5. As for Fig. 3 but with the uncertainty in the intercept C reduced to 0.025 (1-). 

 
Fig. 6. Relative PDF obtained via the points in the narrow slice about JB=0.20 shown in Fig. 5. 
This is not the uncertainty PDF for the quantity M for experiment B. 
 
Please remember that for our toy problem we know the slope for experiment B is 
MB=1.4000.021. The algorithm choice of Zika et al. gives the illusion that if C is not 
constrained in the prior then the uncertainty in M will be large and non-Gaussian (see Fig. 4), 
while if C is constrained in the prior then the uncertainty in M is small (see Fig. 6). The root 
cause of the problem is the metric J has a useful meaning only when it is small (about or smaller 
than the relative experimental uncertainties). Locking in the expectation of experiment A as the 
“reference” and using the large FOM JB obtained with the expectation of experiment B relative 
to the reference A, to generate the uncertainty PDF for experiment B, is inappropriate. 
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(3)  Standard numerical Bayesian solution for the “toy” problem 
 
First we calculate the 2 using the data from experiment A relative to each of the 10000 trial 
models. The corresponding array of 2 versus M points is displayed in Fig. 7. Each point is given 
the weight W=exp(2/2). Projecting these weights down onto the horizontal axis gives the 
uncertainty PDF for MA and is displayed in Fig. 8. The corresponding results for experiment B 
are displayed in figures 9 and 10. It would be inappropriate to use the 2 difference between 
experiment A and B of ~1600, and then obtain an uncertainty PDF for experiment B by taking a 
slice of the array elements from Fig. 7 about 2~1600. This would give a mean value near 
MB=1.4 (only using the right hand side of the figure) but the distribution would be wide with 
long non-Gaussian tails. 

 
Fig. 7. 2 versus M points for experiment A. 

 
Fig. 8. Slope MA uncertainty PDF obtained by brute-force numerical Bayesian inference. This 
numerical result differs from a Gaussian, only because of the small number of trials that are a 
close match to the data. This can be rectified by resampling the 10000 trials over a space more 
conducive to the size of the true uncertainties. 
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Fig. 9. 2 versus M points for experiment B. 

 
Fig. 10. Slope MB uncertainty PDF obtained by brute-force numerical Bayesian inference. This 
numerical result differs from a Gaussian, only because of the small number of trials that are a 
close match to the data. This can be rectified by resampling the 10000 trials over a space more 
conducive to the size of the true uncertainties, as presented in Fig. 11. 

 
Fig. 11. As for Fig. 10, but with a more efficient prior set. Here M is sampled uniformly from 
1.30 to 1.50, instead of from 0 to 2.0 as done for Fig. 10. 
 
Please notice the brute-force numerical Bayesian inference is in agreement with the slopes 
obtained using Eq. (1) reported in section (1), while the Zika et al. method generates incorrect 
results that are very sensitive to the assumed priors. When broad priors are used in a 2 parameter 
model the method of Zika et al. generates non-Gaussian distributions with non-physical long 
tails, and rms uncertainty values much larger than the corresponding known analytical solutions.  
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